
Minimising Computational Complexity of the RRT Algorithm
A Practical Approach

Mikael Svenstrup, Thomas Bak and Hans Jørgen Andersen

Abstract— Sampling based techniques for robot motion plan-
ning have become more widespread during the last decade.
The algorithms however, still struggle with for example narrow
passages in the configuration space and suffer from high
number of necessary samples, especially in higher dimensions.
A widely used method is Rapidly-exploring Random Trees
(RRT’s). One problem with this method is the nearest neighbour
search time, which grows significantly when adding a large
number of vertices. We propose an algorithm which decreases
the computation time, such that more vertices can be added
in the same amount of time to generate better trajectories.
The algorithm is based on subdividing the configuration space
into boxes, where only specific boxes needs to be searched to
find the nearest neighbour. It is shown that the computational
complexity is lowered from a theoretical point of view. The
result is an algorithm that can provide better trajectories
within a given time period, or alternatively compute trajectories
faster. In simulation the algorithm is verified for a simple RRT
implementation and in a more specific case where a robot has
to plan a path through a human inhabited environment.

I. INTRODUCTION

Sampling based methods for motion and path planning
have gained more interest during the last decade, as com-
puter power has increased. Among the most widely used
techniques are Rapidly-exploring Random Trees (RRT’s)[1],
which work by randomly expanding a tree with vertices over
the configuration space to find a path from a start location to
a goal location. RRT’s have been used in various applications
such as kinodynamic path planning [2], navigation for urban
driving [3], coordination of robot motion [4], and humanoid
robot motion planning [5]. The main strengths of an RRT
are the ease of implementation, the ability to avoid obstacles
and the applicability for systems with differential constraints.
RRT algorithms do, however, suffer from the large number
of vertices necessary in trees for large dimension problems
and for problems with large configuration spaces including
many obstacles. When adding a large number of vertices to
a tree, especially the time it takes to find the nearest other
vertex in each iteration is time consuming.

There are two ways to address this problem. One approach
is to make a smarter algorithm, which needs fewer samples
to obtain the goal. Another approach is to speed up the
search for the nearest neighbour, such that more vertices
can be added within the same time period. Most research
has focused on the first problem, where most of the ideas

M. Svenstrup and T. Bak are with the Department of Electronic Sys-
tems, Automation & Control, Aalborg University, 9220 Aalborg, Denmark
{ms,tba}@es.aau.dk

H.J. Andersen is with the Department for Media Technology, Aalborg
University, 9220 Aalborg, Denmark hja@imi.aau.dk

come from trying to intelligently bias the exploration towards
unexplored portions of the configuration space, such that the
algorithm needs fewer samples to converge towards a goal
[6], [7]. This can be done by either biasing the sampling
distribution or improving the vertex extension operation.
The nearest neighbour search typically rely on a naive
brute force method, where the distance to all vertices are
calculated, to find the nearest. This is mainly because it is
by far the simplest way to do it. Not much research within
the motion planning community has been done trying to
optimise the speed of the nearest neighbour search. Similar
problems have, however, been studied generally in the field
of computational geometry under the name range search
problems [8], and have applications in e.g. computer graphics
and when querying large databases [9], [10], [11].

Good candidate algorithms for finding the nearest neigh-
bour are found using a tree based structure to subdivide the
configuration space. Algorithms include quadtrees, R-trees
and kd-trees. Quadtrees and R-trees have a bad worst case
performance, which may be why the kd-tree is the most
widely used. A kd-tree works by recursively subdividing the
space into two half spaces one dimension at the time (see [1],
[12]). The query time complexity of a kd-tree is O(n1− 1

d)
(compared to O(n) for a brute force approach), where n
is number of vertices and d is the number of dimensions.
However, query time can be improved substantially for
higher dimensional search spaces, if it is enough to find the
approximate nearest neighbour (ANN) [13], [12], where the
complexity is reduced to O(log n). These tree based search
algorithms are not designed for use in motion planning, but
for database query algorithms, for which you may not know
the structure of the data or the size of n. They are made
for fast queries and do not consider the time it takes to pre-
process the database to obtain the fast query. This can be a
problem for motion planning algorithms, which need to do
the pre-processing on-line as well.

A desirable characteristic for on-line motion planning
problems is to add as many vertices in as short a time period
as possible. If the speed of the range query decreases as the
tree grows larger it effectively limits how large the tree can
grow within some time period, which is critical in an on-line
system.

We present a simple practical algorithm for minimis-
ing the nearest neighbour search time. The algorithm is
demonstrated for typical RRT motion planning problems
for a mobile robot. The algorithm is based on a grid in
d dimensions, which becomes d-dimensional boxes, where
each vertex belongs to a specific box. Only the relevant

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-380-3/11/$26.00 ©2011 IEEE 5602

boxes need to be searched to find the nearest vertex. The
background for this algorithm has origin in computational
geometry, but has to the best of our knowledge not been
exploited for motion planning. The algorithm is applicable
to on-line as well as off-line applications and the benefit of
this box method increases as number of vertices, that need
to be added to the tree, grows.

First the algorithm is presented, and then an analysis of
the time complexity versus other methods is given. Then the
algorithm is demonstrated in simulations.

II. METHODS

The structure of a very basic RRT algorithm can be seen
in Algorithm 1.

Algorithm 1 Standard RRT (see [14])
RRTmain()

1: Tree = q.start
2: q.new = q.start
3: while Distance(q.new , q.goal) < ErrTolerance do
4: q.target = SampleTarget()
5: q.nearest = NearestVertex(Tree , q.target)
6: q.new = ExtendTowards(q.nearest,q.target)
7: Tree.add(q.new)
8: end while
9: return Trajectory(Tree,q.new)

SampleTarget()
1: if Rand() < GoalSamplingProb then
2: return q.goal
3: else
4: return RandomConfiguration()
5: end if

The objective of the algorithm is to start from an initial
configuration and find a path to a goal configuration. This
is done by continuously adding vertices to a tree, which is
grown from the starting configuration. To extend a tree a
random point is sampled from the configuration space. Then
the distances to all existing vertices are calculated, and the
nearest vertex is chosen. Finally the tree is extended from
the chosen vertex towards the sampled configuration. When a
leaf vertex reaches within some distance of the goal location,
the algorithm is stopped. When the tree becomes large, a
significant part of the computation time is spend on the
nearest neighbour search (the red line in Algorithm 1).

A. Minimising computation time for finding nearest vertex

The basic idea of the proposed approach, for minimising
the computational complexity of finding the nearest ver-
tex, is simple. It consist of partitioning the d-dimensional
configuration space in a number of d-dimensional boxes,
and only calculate the distance to other vertices in relevant
boxes instead of all vertices in the whole configuration
space. For simplicity, we use k equally sized boxes in each
dimension. That means we will get kd d-dimensional boxes.
The algorithm is started by searching all vertices in the same

box as the newly sampled vertex. Then boxes adjacent to
the first box are searched and step by step boxes further
and further away are searched. The algorithm terminates,
when the nearest found vertex is closer than the boundary
between the searched and unsearched boxes. In that case it
is guaranteed that no vertex in any of the outer boxes, which
have not been searched yet, can be closer than the current
nearest vertex.

The algorithm is illustrated for two dimensions in Fig. 1.
Here an RRT with 100 vertices have already been grown.
The first step is to sample a new vertex, which is the red
dot. The corresponding box, to which it belongs, is the red
hatched area. A zoomed version of this area is shown in
Fig. 2.

 0 0,2 0,4 0,6 0,8 1
 0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

 1

RRT vertex RRT edge New vertex

Fig. 1. The configuration space partitioned in a number of boxes in each
dimension. A grown tree has to be extended with a newly sampled vertex
(the red dot). The nearest boxes to the new vertex is hatched in different
colours.

After finding the corresponding box, we start by calculat-
ing the distance to all vertices in this box (V1 and V2) and
the distance to the nearest border of the box, dborder, which
is shown in Fig. 2. If any of the vertices are closer than
dborder:

min
i∈I
{|Vnew − Vi|} ≤ dborder , (1)

where I is the set of vertices in the box, then no other vertex
in the configuration space can be closer. In this case the
algorithm is terminated after only calculating the distance to
two vertices plus the distance to the border of the box instead
of calculating the distance to all 100 vertices. However, in
the case of Fig. 2 dborder is the smallest, and thus, there may
be other vertices which are closer. Therefore the distances
to all vertices in the adjacent boxes are calculated, which is
the green hatched area. In this case there are eight additional
vertices (see Fig. 1), for which V3 in Fig. 2 is the nearest.
The distance to V3 is less than the distance to the border of

5603

the yellow hatched area in Fig. 1, which means that no other
vertex can be closer, and thus V3 is the nearest vertex.

0,35 0,4 0,45 0,5

0,34

0,36

0,38

 0,4

0,42

0,44

0,46

0,48

 0,5

V
new

V
1

V
2

V
3

d
border

Fig. 2. A zoomed version of Fig. 1, where the three nearest vertices and
the newly sampled vertex can be seen.

In this case the algorithm terminated after calculating the
distance to 10 vertices, which is 1/10 of the total number of
vertices. When initially building the tree, there are only few
vertices and hence a large overhead, as a large number of
boxes need to be searched. But once there is a significant
density of vertices, the box method is substantially faster
than the brute force approach. The method is illustrated
here in two dimensions, but is easily generalised to more
dimensions.

The algorithm for the described box method is given in
Algorithm 2.

Algorithm 2 The algorithm for the box method, which is
used to find the nearest vertex (the red line in Algorithm 1).
NearestVertex(Tree, q.target)

1: boxNumber = FindBoxNumber(q.target)
2: searchArea = boxNumber
3: while Dist(q.target,searchBoundary)

< Dist(q.target,q.nearest) do
4: ExpandSearchArea()
5: q.nearest = FindNearest(searchArea,q.target)
6: end while
7: InsertIntoBox(q.target,boxNumber)
8: return q.nearest

B. Time Complexity Analysis

We start by analysing the time complexity of the standard
RRT algorithm as shown in Algorithm 1. The time it takes
to add N vertices to the tree (disregarding the initialisation),
can be calculated as the sum of the time for N iterations of
each of the lines 4-7 in Algorithm 1:

T (N) = Tsample(N)+Tnearest(N)+Textend(N)+Tadd(N),
(2)

where each Tsample, Tnearest, Textend, Tadd correspond to
the lines 4-7 respectively. Tsample and Tadd are simple
operations, and can be done in linear time, so the complexity
is O(N). The extension time, Textend, of the tree can
take considerable longer if e.g. collision checking or other
intelligent extension strategies are used. These calculations
do, however, not depend on the number of vertices already
in the tree, and can thus still be done in linear time. Each
time the nearest vertex has to be found, the distance to all
previously added vertices must be calculated:

Tnearest(N) =

N∑
i=1

(i− 1)Tdist =
N2 −N

2
Tdist (3)

where Tdist is the time it takes to calculate the distance to
any other vertex. So even though Tdist is small compared
to Textend, the complexity is O(N2 − N). By adding the
derived complexity for the sample, nearest, extend and add
operations respectively, the combined complexity for the
brute force nearest neighbour search is:

O(N) +O(N2 −N) +O(N) +O(N) ≈ O(N2) (4)

It can be seen that the complexity is bounded by O(N2−N),
which is the complexity for the nearest operation. So when
the tree becomes large, a significant part of the computation
time is spend on calculating distances to other vertices, and
much computing time can be saved if the nearest neighbour
search is optimised.

In the following the complexity for finding the nearest
vertex, when adding vertex number n is analysed. When
using brute force, all n − 1 previous vertices need to be
searched, which therefore has complexity O(n).

Finding the nearest vertex using the box method depends
of the number of boxes M . If M is large compared to n, the
probability of having to search many of boxes is large, so this
is not a good solution. Opposite, if M ≤ n the probability
of having to search many boxes is small. In the case of
evenly distributed vertices the average number of vertices to
check will be n/M , and thus the complexity will be O(n/M).
So optimally, M needs to be chosen approximately equal to
n [11], which gives a complexity of O(1). However, as n
increases in each iteration, this is not possible all the time.
But experimentally we have found that a good value for M
is around N/2, where N is the maximum number of vertices
in the RRT.

While n is small, there is no benefit of using the algorithm,
since too many boxes have to be searched. So if only
inserting into boxes until n is larger than some value,
increases the speed of the algorithm. In contrast to the brute
force approach, there is an overhead when each vertex has to
be inserted into the data structure, which contains the boxes.
Calculating the corresponding box for a vertex in the box
method takes constant time, so the insertion has complexity
O(1), which does not change the overall complexity (O(1))
of the method.

This complexity is compared to the most used tree based
approach for minimising the time it takes to find the nearest

5604

neighbour in motion planning problems, namely the kd-tree.
According to [12], a kd-tree has a complexity for inserting a
vertex of O(log n). Furthermore, the complexity for finding
the nearest vertex is O(n1− 1

d), where d is the number of
dimensions [12]. The combined complexity for searching and
inserting is therefore O(n1− 1

d + log n) ≈ O(n1− 1
d).

This complexity analysis is based on a balanced tree.
A disadvantage of the kd-tree is that if initial vertices are
not well distributed, the tree will become unbalanced, and
thus the performance degrades significantly. This can be
somewhat compensated for if the tree is rebuilt after some it-
erations. The rebuild process has a complexity of O(n log n),
which does not change the amortised time complexity, since
it is only done once or a couple of times. Using the box
method, this not a problem, since each vertex belongs to
one specific box, and the data structure is therefore always
the same, and nothing is gained by rebuilding.

So for finding the nearest other vertex the complexity for
the brute force method is O(n), the kd-tree has a complexity
of O(n1− 1

d), and if a proper number of boxes are chosen the
box method has a complexity of O(1).

C. General Considerations

One disadvantage with both the box based algorithm and
the kd-tree, is the overhead when only adding a few vertices.
However, this happens only in limited cases, where the con-
figuration space is relatively small and with few obstacles,
in which case an RRT may not be the right algorithm to
use anyway. So to obtain good exploration in general, it is
useful to use as many vertices as possible, for which the
box method performs well. This is especially the case in on-
line applications, where there is a time limit for how long
the planning can take. It is though, possible to overcome
some of the initial overhead using the box based algorithm.
Initially when the number of vertices is much smaller than
the number of boxes (n�M), it is faster to just add vertices
to the boxes, and do a brute force nearest neighbour search.
When n grows, the algorithm can switch to searching in the
boxes. Since the time it takes to add a vertex is small and
constant (the complexity is O(1)), it does not cost much
overhead. It is also a possibility to dynamically increase the
number of boxes in each dimension, as the tree grows large.
This will enable the ratio n/M to stay close to an optimal
value.

Another advantage of the box based algorithm is that it
is easy to insert or remove vertices from the data structure
compared to inserting and removing from the kd-tree. Insert-
ing or removing vertices only requires the operation to add
or remove the vertex from the corresponding box, which is
O(1). Inserting a vertex in the kd-tree requires an O(log(n))
search to find out where to insert. Removal of vertices is
generally not easy for the kd-tree. It requires rebuilding the
whole subtree beneath the place, where the vertex needs
to be inserted. Conceptually it is also easier to understand
and implement the nearest neighbour search using the box
method, because a kd-tree search includes recursive visiting
branches of the tree.

III. EXPERIMENTS

Two different experiments have been set up to demonstrate
the effectiveness of the box based nearest neighbour search
algorithm in comparison to the brute force approach. First
the box based algorithm is implemented together with a
basic RRT algorithm, as shown in Algorithm 1, and the
performance is compared to the brute force approach and the
kd-tree. Secondly, the algorithm is used in a more realistic
environment, where a robot plans a path in an environment
with obstacles.

In the first experiment an RRT with 10000 vertices is build
in a d-dimensional space of 1m in each dimension. This is
done for d = 2, 4, 6 dimensions using a grid with 10 boxes
in each dimension. The time for adding each vertex is con-
tinuously logged, and for comparison the same experiment is
done using a brute force approach. For comparison to the kd-
tree, an existing MATLAB implementation of the algorithm
has been used [15]. However, this implementation of the
algorithm does not support adding vertices to an existing
tree, and the nearest neighbour search relies on balanced
tree. To be able to compare to the other algorithms, a new
tree is built each time a vertex is added, but only the time
it takes to search for the nearest vertex, is then logged for
the purpose of the experiment. This is only done for the two
dimensional case.

In the second experiment a robot trajectory is planned
through a two dimensional configuration space. The config-
uration space contains obstacles represented by a potential
field, and vertices are pruned when the cost gets too high.
The potential field represents persons moving in the area. For
further information on the setup, see [16]. Fig. 3 illustrates
an example of the potential field with a few vertices already
added to the tree. The green dot to the left at (2, 0) is
the starting position of the robot, the red lines are possible
trajectories, and the red dots are vertices. Furthermore, the
red areas of the potential field are where there are persons,
and hence where the robot should not go. First the tree with
10000 vertices is built using the box based distance search
method. Then a tree is built using a brute force nearest
neighbour search approach, where the algorithm is allowed
to use the same amount of time it took to build the first tree.
This experiment makes it possible to see the benefits of the
box based method in an on-line application.

 0 5 10 15 20 25 30
−5

 0

 5

[m]

[m
]

Fig. 3. An example of an RRT with 300 vertices in a potential field
landscape, which is used for experimenting with the algorithm.

5605

IV. RESULTS

The time for building an RRT with 10000 vertices in two,
four and six dimensions is shown in Fig. 4 using both the
box algorithm and the brute force approach.

 0 2000 4000 6000 8000 10000
0

1

2

T
im

e
 [

s]

2 dimensions

Brute force

Box method

 0 2000 4000 6000 8000 10000
0

1

2

T
im

e
 [

s]

4 dimensions

 0 2000 4000 6000 8000 10000
 0

 5

10

T
im

e
 [

s]

Vertices

6 dimensions

Fig. 4. From top to bottom the figure shows the time it takes for adding
10000 vertices in two, four and six dimensions respectively. The blue line
shows the time it takes for the brute force approach and the green line shows
the time for the box based method.

A comparison of the nearest vertex search times only, is
done for two dimensions in Fig. 5 for the three methods;
brute force, box based method, and kd-tree.

 0 2000 4000 6000 8000 10000
 0

0,2

0,4

0,6

Vertices

T
im

e
 [

s]

Brute force

Box method

kd−tree

Fig. 5. Comparison of the time it takes to find the nearest neighbour for
two dimensions using the kd-tree as well as the brute force method and
the box method. Note that comparing to Fig. 4, the brute force and the
box method are slightly faster, because only the time for finding the nearest
vertex and not the other parts of the RRT algorithm is considered in this
experiment.

In Fig. 6 an RRT with 10000 vertices is built in the
potential field shown in Fig. 3. And in Fig. 7 the RRT is
built using the brute force method for the same amount of
time as used in Fig. 6 for the box method. In both figures
only 1/10 of the vertices are plotted to avoid cluttering the
figure too much.

V. DISCUSSION

The results demonstrate that the box algorithm clearly
outperforms the brute force approach for two and four
dimensions (the top and middle plot in Fig. 4). One thing
to notice is that the box method has a larger advantage in
four dimensions, than in two dimensions. Since there are
10 boxes in each dimension, there are 100 boxes in two

 0 5 10 15 20 25 30
−5

 0

 5

[m]

[m
]

Fig. 6. A tree with 10000 vertices. Here the configuration space is explored
very well.

 0 5 10 15 20 25 30
−5

 0

 5

[m]

[m
]

Fig. 7. A tree with approximately 2000 vertices, which does not explore
the configuration space very well. This tree is build using brute force search,
and has used the same runtime as the box based method in Fig. 6

dimensions and 104 boxes in four dimensions. As the optimal
number of boxes is around N/2, the number of boxes in four
dimensions is closer to the optimal number of boxes, which
is approximately 5000. In the bottom plot of Fig. 4 it is
seen that in 6 dimensions, it starts to take time for the box
algorithm. This is a consequence of there being too many
boxes compared to the number of vertices. The total number
of boxes is 106. So if the number of vertices is in the range of
a million, the algorithm would perform much better, which
can also be seen on the trend of the figure. After for example
30000 vertices, which is not shown in Fig. 4, it is about
twice a fast as the brute force method for six dimensions
and at 300000 vertices it is 22 times faster. A way to reduce
the computation time for this large number of boxes is to
only subdivide some dimensions into boxes, like for example
only the first three dimensions. This can also be utilised in
planning problems, where the variance of the vertex locations
varies much in different dimensions. It can be an advantage
to have a larger number of boxes in the dimensions, were
there is a large vertex variance. Possible examples are for a
multilinked arm, where the first joint probably moves close
around a nominal operating point, or for a mobile robot,
where it may be desirable to explore the position part of the
configuration space well, but e.g. the speed and orientation
are around nominal values, or for configuration spaces with
narrow passages in some dimensions.

According to the complexity calculations, the box based
algorithm should have an approximate linear performance
(O(N)) when adding N vertices, if the correct number of
boxes is chosen. In the middle figure of Fig. 4 it can be seen

5606

that the box method performs almost linearly, which is in
accordance with the theory. Similarly in the bottom figure
for six dimensions, it is seen that the complexity is starting
to get closer to linear as the number of vertices grows larger,
even though there is a large overhead in the beginning.

The performance of the kd-tree implementation in Fig. 5
is seen to be worse than using the box based method.
The used implementation of the kd-tree ensures that the
search is always done in a balanced tree, which would not
typically be the case in a real application, and thus in a
real application, the kd-tree would perform worse than in
this case. Furthermore, because of the complexity of the kd-
tree search algorithm, O(n1− 1

d), it performs worse in higher
dimensions, where it can be seen in Fig. 4 that the box
based method performs better for e.g. four dimensions. The
speed of the kd-tree algorithm can, however, be improved for
high dimensional search spaces by using approximate nearest
neighbour (ANN) algorithms. This comes at a tradeoff for
not being entirely sure that it is the correct nearest neighbour,
which has been found, which is not desirable in some
applications. Additionally the bound on the complexity for
ANN is O(log n) [8], [17], which is sill not better than the
proposed method.

In Fig. 6 a tree with 10000 vertices is built. It is seen that
the tree covers all of the obstacle free configuration space
well. Contrary to this, Fig. 7 shows that the configuration
space is not covered well, when planning using the brute
force method for the same amount of time. Since using the
box method cause much denser population of vertices, it is
possible to choose trajectories, which are better. For example,
it is seen in Fig. 7 that the tree tends to move along narrow
branches in the middle between obstacles, and might thus
not find narrow passages or a feasible trajectory closer to
obstacles. It is hence clearly advantageous to use the box
method to be able to explore the configuration space well.

In general we argue that the presented box based nearest
neighbour search algorithm is better than both a brute force
approach and the kd-tree for robot trajectory planning. The
algorithm can be adapted to perform optimal for a given
problem, e.g. the number of boxes in each dimension can be
adjusted to improve performance, which is not possible for
the kd-tree. It is also easier to implement than the kd-tree,
and it is faster to insert and remove vertices from the data
structure.

VI. CONCLUSION

In this paper we presented a practical algorithm for min-
imising the computational complexity of an RRT algorithm
for robot path planning problems. It is shown that the time
it takes to find the nearest neighbour in a standard RRT,
using a brute force approach is substantial when the number
of vertices in the tree grows. Thus, a lot of computation
time can potentially be saved, if the nearest neighbour
search is minimised. The proposed algorithm partitions the
configuration space into a number of boxes, where only
relevant boxes need to be searched to find the nearest vertex.

The algorithm can be tuned to work better if an approximate
bound on the maximum number of vertices is known. But
generally the algorithm works better the larger the number
of vertices there are in the tree. This also means that there
is a relatively large overhead when only a small number of
vertices needs to be added to the tree, which is not often
the case. However, complexity calculations and simulations
show that the proposed box based method performs better
than both a brute force approach and using a kd-tree to find
the nearest neighbour.

The algorithm can be used to increase the number of
vertices, which it is possible to ad within a given time
period, and can thus provide better trajectories, or compute
a trajectory faster.

REFERENCES

[1] S. LaValle, Planning algorithms. Cambridge Univ Pr, 2006.
[2] S. LaValle and J. Kuffner Jr, “Randomized kinodynamic planning,”

The International Journal of Robotics Research, vol. 20, no. 5, p.
378, 2001.

[3] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli, and J. How, “Motion planning
for urban driving using rrt,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2008. IROS 2008, 2008, pp. 1681–
1686.

[4] D. Ferguson and A. Stentz, “Anytime, dynamic planning in high-
dimensional search spaces,” in Proc. IEEE International Conference
on Robotics and Automation, 2007, pp. 1310–1315.

[5] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots,” Robotics Research, vol. 15, pp. 365–
374, 2005.

[6] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 2859–2865.

[7] R. Tedrake, “Lqr-trees: Feedback motion planning on sparse random-
ized trees,” in Proceedings of Robotics: Science and Systems, Seattle,
USA, June 2009.

[8] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proceedings of Robotics: Science and
Systems, Zaragoza, Spain, June 2010.

[9] S. Arya and M. David, “Mount, Approximate range searching,”
Computational Geometry: Theory and Applications, vol. 17, no. 3-
4, pp. 135–152, 2000.

[10] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y.
Wu, “An optimal algorithm for approximate nearest neighbor searching
fixed dimensions,” J. ACM, vol. 45, no. 6, pp. 891–923, 1998.

[11] R. Sedgewick, Algorithms in C, M. A. Harrison, Ed. Addison-Wesley,
Reading, MA, 1990.

[12] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion:
Theory, Algorithms, and Implementations (Intelligent Robotics and
Autonomous Agents). The MIT Press, June 2005. [Online]. Available:
http://www.worldcat.org/isbn/0262033275

[13] S. Arya and D. Mount, “Approximate nearest neighbor queries in
fixed dimensions,” in Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 1993, p. 280.

[14] D. Ferguson and A. Stentz, “Anytime rrts,” in Proc. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2006, pp.
5369–5375.

[15] A. Tagliasacchi, “kd-tree for matlab,” MATLAB Central
File Exchange, Retrieved July 2010. [Online]. Available:
http://www.mathworks.se/matlabcentral/fileexchange/21512

[16] M. Svenstrup, T. Bak, and H. J. Andersen, “Trajectory planning for
robots in dynamic human environments,” in IROS 2010: The 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taipei, Taiwan, October 2010.

[17] A. Yershova and S. M. LaValle, “Improving motion-planning al-
gorithms by efficient nearest-neighbor searching,” Robotics, IEEE
Transactions on, vol. 23, no. 1, pp. 151 –157, 2007.

5607

