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Abstract— Respecting people’s social spaces is an important
prerequisite for acceptable and natural robot navigation in
human environments. In this paper, we describe an adaptive
system for mobile robot navigation based on estimates of
whether a person seeks to interact with the robot or not.
The estimates are based on run-time motion pattern analysis
compared to stored experience in a database. Using a potential
field centered around the person, the robot positions itself at the
most appropriate place relative to the person and the interaction
status. The system is validated through qualitative tests in a real
world setting. The results demonstrate that the system is able
to learn to navigate based on past interaction experiences, and
to adapt to different behaviors over time.

I. INTRODUCTION

The vision of robots participating in our day-to-day lives is

a main part of the focus in the research field of Human Robot

Interaction (HRI) [5]. The vision is supported by progress

in computing, visual recognition, and wireless connectivity,

which open the door to a new generation of mobile robotic

devices that see, hear, touch, manipulate, and interact with

humans [8].

Consider a robot supporting care assistants. At one time

of the day, the support may include handing out food. In this

case, the robot will interact closely with the care assistants

and the persons being assisted. After a while, the persons

around the robot will not need its assistance anymore and

hence its behavior should be adjusted according to this new

situation. For a robot to behave naturally in such situations,

it will be necessary for it to learn from experiences and to

adapt its behavior to the person’s desire to interact.

To incorporate the ability to learn from experiences,

researchers [13] have investigated Case Based Reasoning

(CBR). CBR allows recalling and interpreting past experi-

ences, as well as generating new cases to represent knowl-

edge from new experiences. To our knowledge, CBR has not

yet been used in a human-robot interaction context, but has

been proven successful solving spatial-temporal problems in

robotics in [12]. CBR is characterized by its adaptiveness

making it well suited for implementing an adaptive behavior

on a human interactive robot, as described in the case above.

Hidden Markov Models and Bayesian inference algorithms

have successfully been applied for modeling and predicting
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spatial user information [9], but a clear advantage of using

CBR is the simple implementation and the relatively little

need of parameter tuning.

We introduce a simple, robust and adaptive system for

detecting whether a person seeks to interact with the robot

based on the person’s pose and position. We define a human’s

pose as the position and orientation of the body, and infer

pose from 2D laser range measurements as explained in [16].

Other researchers [14] have investigated the use of laser

scanner input and head pose information from a camera, but

the approach here is limited to only using a laser scanner.

When the probable outcome of a person-robot interaction

has been determined by the robot, it is used as a basis

for human-aware navigation respecting the person’s social

spaces as discussed in [6]. Several authors [2], [3], [6], [11]

have investigated the willingness of people to engage in

interaction with robots that follow different spatial behavior

schemes. In the method described here, navigation is done

using potential fields which has shown to be useful for

deriving robot motion [15], [7]. The implemented adaptive

navigation behavior is described further in detail in [1], [16].

The adaptive CBR and navigation methods have been imple-

mented and tested in a real world human robot interaction

test setup.

II. MATERIALS AND METHODS

The robot behavior described in this paper is inspired by

the spatial relation between humans (proxemics) as outlined

in [10]. Hall divides the zone around a person into to four

categories according to the distance to the person:

• the public zone > 3.6m

• the social zone > 1.2m

• the personal zone > 0.45m

• the intimate zone < 0.45m

Social spaces between robots and humans were studied in

[17] supporting the use of Hall’s proxemics distances.

In order for the robot to be able to position itself in the

most appropriate position relative to the person, it should be

able to estimate what will be the outcome of the human-

robot interaction during run-time. If it is most likely that the

person do not wish to interact, the robot should not violate

his or hers personal space but seek to the social or public

zone. On the other hand, if it is most likely that the person

is willing to interact with the robot, the robot should try to

enter the personal zone.

To accomplish this behavior an evaluator based on the

motion of a person relative to the robot is introduced. The

philosophy of the evaluator is that:
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to a new observation. The closer L is to zero, the more

conservative the system is and the less PI will be affected

by new observations. In a progressive setup, L is close to 1

and consequently PI will adapt faster.

Algorithm I

if (Interested) then

PI = PI + wL

if PI > 1 then

PI = 1

else if (Not Interested) then

PI = PI - wL

if PI < 0 then

PI = 0

B. Human-aware Navigation

The human-aware navigation is described in detail in [1],

[16], and is here briefly summarized.

For modeling the robots navigation system, a person

centered potential field is introduced. The potential field

is calculated by the weighted sum of four Gaussian dis-

tributions of which one is negated. The covariance of the

distributions are used to adapt the potential field according

to PI.

In the extreme case with PI = 0, the potential field will

like look Fig. 3(a). Using the method of steepest descent,

the robot will move towards the dark blue area, i.e. the

robot will end up at the lowest part of the potential function,

approximately 2 meters in front of the person. The other end

of the scale with PI=1, is illustrated in Fig. 3(c). Here the

person is interested in interaction, and as result the potential

field is adapted such that the robot is allowed to enter the

space right in front of him or her. In between Fig. 3(b) is

the default configuration of PI = 0.5 illustrated. In this case

the robot is forced to encounter the person in approximate

45
◦, according to [6], [18] studies.

III. EXPERIMENTAL SETUP

The basis for the experiments was a robotic platform

from FESTO called Robotino. The robot is equipped with

a head having 126 red diodes (see Fig. 4) which enables

it to express different emotions. The robot is 1 meter high,

and has mounted an URG-04LX line scan laser placed 35

cm above ground level, scanning 220 degrees in front of the

robot. In order to get feedback from the test person, a simple

on/off switch was placed just below the robot’s head, 75 cm

above ground level. The software framework Player [4] was

installed on the platform and used for control of the robot

and implementation of the CBR system.

To detect persons the robot rely on the scans from

the laser range finder using the leg detection algorithm

presented in [19]. The algorithm is further supported by a

Kalman filter for tracking and estimation of the person pose

[16].

Laser

Contact

Fig. 4. The modified FESTO Robotino robotic platform.

Experiments. Evaluation of the proposed method were

performed through two experiments:

In experiment 1, the objective was to see if estimation

of PI can be obtained based on interaction experience from

different persons. The test should illustrate the learning

ability of the system, making it able to predict the outcome of

the behavior for one person based on former experience from

others. A total of five test persons were asked to approach or

pass the robot using different motion patterns (see Fig. 5).

The starting and end point of each trajectory were selected

randomly, while the specific route was left to the own devices

of the test person. The random selection was designed so the

test persons would end up interacting with the robot in 50%

of the cases. In the other 50% of the cases, the test persons

would pass the robot either to the left of the right without

interacting. The output values (PI), the input values (position

and pose), and the database were logged for later analysis.

In experiment 2, the objective was to test the adaptiveness

of the method. The system should be able to change its

estimation of PI over time for related behavior patterns. A

total of 36 test approaches were performed with one test

person. The test person would start randomly in P1, P2 or

P3 (see Fig. 5) and end his trajectory in P5. In the first 18

encounters the test person would indicate interest, while in

the last 18 encounters the person did not indicate interest.

The output values (PI), and the input values (position and

pose) were logged for later analysis.

The test took place in a foyer at the University campus

with an open area of 7 times 10 meters. This allowed for

easily repeated tests with no interference from other objects

than the test persons. If the test persons passed an object to

the robot, they would activate the on/off switch, which was

recognized as interaction by the system. If the test person

did not pass an object within 15 seconds or disappeared

from the robot field of view, this was recognized as if no

close interaction had occurred. The test persons were selected

randomly among the students from campus. None had prior

knowledge about the implementation of the system.

For all experiments, a learning rate of L = 0.3 was used.
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(a) After 1st test person (b) After 3rd test person (c) After 5th test person
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Fig. 6. The figures show the values stored in the CBR system after completion of the 1st, 3rd and 5th test person. The robot is located in the origin (0,0),
since the measurements are in the robot coordinate frame. Each dot represents a position of the test person in the robot coordinate frame. The direction
of the movement of the test person is represented by a vector, while the level (PI) is indicated by the color range.

Fig. 8. The figure is a snapshot of the database after the second experiment
was done. It shows how the mean value for PI is calculated for three areas:
1) the frontal area, 2) the small area and 3) for all cases. The development
of the mean values over time for all three areas are illustrated in Fig. 9

Fig. 9 shows the development of PI for 36 person encoun-

ters for one person.

As can be seen from Fig. 9, the mean value of PI

increases for the first 18 encounters - especially for the

frontal and small area having a maximum value at 0.9 and

0.85 correspondingly, but less for the mean for all cases

(around 0.65). After 18 encounters, PI drops for all areas.

Most notable, the frontal area drops to a minimum of 0.39

after 36 encounters. Although PI also drops for the small

area, it does not fall to a value less than 0.42 which is

approximate the same as for all cases 0.43 which has the

smallest descent.

V. DISCUSSION

The results demonstrate that using pose and position as

input to a CBR system, it is possible to evaluate the behavior

of a person adequately for human aware navigation system.

Fig. 9. Illustrates how the mean of PI evolves for the three areas indicated
in Fig. 8 for 36 person encounters for one test person.

As can be seen in Fig. 6(a-c), the number of plotted vectors

increases as more and more cases are stored in the database.

This shows the development of the CBR system, and clearly

illustrates how the CBR system gradually learns from each

person encounter. The number of new cases added to the

database is highest in the beginning of the training period

where few (or no) case matches are found. As the training

continues, the number of new cases added to the database is

reduced as matching cases are found and therefore causes an

update. The growth of the database when training depends

on the resolution of the selected case features and the time

and complexity of the training scenario. Based on current

experiments there are no indications that the size of the

database will grow inappropriately. The system could be

enhanced by incorporating information about the environ-

ment or the interaction context thereby accommodation more

realistic cluttered environments. In Fig. 6(a-c), it can be seen

that the vectors are gradually turning from either red or blue

to green as distance increases. This is expected, because the

weight with which PI gets updated, is as a function of the

distance between the robot and test person (see Fig. 2). This
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is reasonable as it gets more difficult to assess human interest

at long distance.

In all three figures, the vectors in the red color range

(high PI) are dominant when the direction of the person is

towards the robot, while there is an overweight of vectors not

pointing directly towards the robot in the blue color range

(low PI). This reflects that a person seeking interaction has

the trajectory moving towards the robot.

Fig. 7 shows the development of PI over time when one

test person changes behavior. It can be seen how maximum

and minimum values for PI increases as more test persons

have been evaluated. After evaluating one test person, the

robot has gathered very little interaction experience, and

thereby has difficulties in determining the correspondence

between motion pattern and end result - hence PI stays

close to 0.5. After the third test person has been evaluated,

the robot now has gathered more cases and therefore has

improved estimating the outcome of the behavior. For the

last test person, the robot is clearly capable of determining

what will be the outcome of the encounter.

Fig. 9 shows the development of PI over time. It can be

seen that PI changes more for the frontal area and small

area than for all other cases. This is because most cases

will be close to 0.5 at large distances, which affects the

mean result when looking at all cases. Furthermore, most

encounters goes through the frontal area thereby having the

highest number of updates of PI. Fig. 9 illustrates that the

database quickly starts to adapt to the new environment,

when the test person changes behavior to no interaction after

the first 18 encounters.

By coupling the CBR system with navigation, the result

is an adaptive robot behavior respecting the personal zones

depending on the person’s willingness to interact - a step

forward from previous studies [15].

VI. CONCLUSION

In this paper, we have described an adaptive system for

natural interaction between mobile robots and humans. The

system forms a basis for human aware robot navigation

respecting the person’s social spaces.

Validation of the system has been conducted through two

experiments in a real world setting. The first test shows that

the Case Based Reasoning (CBR) system gradually learns

from interaction experience. The experiment also shows how

motion patterns from different people can be stored and

generalized in order to predict the outcome of a new human-

robot encounter.

Second experiment shows how the estimated outcome of

the interaction adapts to changes of the behavior of a test

person. It is illustrated how the same motion pattern can be

interpreted differently after a period of training.

An interesting prospect for future work is elaborations

of the CBR system, e.g. doing experiments with a variable

learning rate and additional features in the database.

The presented system is a step forward in creating social

intelligent robots, capable of navigating in an everyday envi-

ronment and interacting with human-beings by understanding

their interest and intention. In a long perspective, the results

could be applied in service or assistive robots in e.g. health

care systems.
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